Enrollment No:	 Exam Seat No:	

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name : Mathematics-I

Subject Code : 4SC01MTC1 Branch : B.Sc. (All)

Semester : 1 Date : 30/11/2018 Time : 2:30 To 5:30 Marks : 70 Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) Find equation of sphere having center (1,2,3) and radius 5. (2)

(14)

- **b**) Solve: y = px + ap(1 p). (2)
 - Check the exactness of the differential equation (ax + hy + g)dx + (hx + by + f)dy = 0. (2)
- d) Find order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{d^3y}{dx^3}\right)^2 + y = 0.$ (1)
- e) Find 11th derivative of $\sin(\pi x)$ (2)
- f) True/false: every differentiable function has machlaurin's series. (1)
- g) Define: Taylor's series expansion of function. (1)
- **h**) Write machlaurin's series of log(1+x). (1)
- i) What is polar form of circle having centre at (1, 1) and radius 4. (2)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

a) Find rank of matrix (5)

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}.$$

- b) Solve 5x 7y + z = 11, 6x 8y z = 15, 3x + 2y 6z = 7 using Cremer's method. (5)
- method.

 c) Find Eigen value of $\begin{bmatrix}
 2 & 2 & 1 \\
 1 & 3 & 1 \\
 1 & 2 & 2
 \end{bmatrix}$ (4)

Q-3	a)	Attempt all questions Discuss the consistency of the system of equation	(14) (5)
		2x + 3y + 4z = 11, x + 5y + 7z = 15, 3x + 11y + 13z = 25.	
	b)	If it is consistent then find it's solution. Find characteristic equation of matrix	(5)
		$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$. Using it find value of	
	c)	$A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$ If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then verify Caley Hamilton's theorem.	(4)
Q-4	a)	Attempt all questions Solve: $(x^2 - y^2)dx + 2xy dy = 0$.	(14) (5)
		Solve: $\frac{dy}{dx} = \cos x \cos y - \sin x \sin y$.	(5)
	c)	Solve: $\frac{dy}{dx} + \frac{4x}{x^2 + 1} y = \frac{1}{(x^2 + 1)^3}$.	(4)
Q-5	a)	Attempt all questions Find equation of sphere which passes through (0,0,0), (2,0,0), (0,3,0) and	(14) (5)
	b)	(0,0,4). Find equation of sphere having end points of diameter are $(1,-2,3)$ and	(5)
	c)	$(0, -1,3)$. Write the polar form of the following points : (a) $(1, \sqrt{3})$ (b) $(-\pi\sqrt{2}, \pi\sqrt{2})$	(4)
Q-6		Attempt all questions	(14)
		State and prove Leibnitz's theorem for n th derivative of product. Find n th derivative of the following:	(6) (4)
		(a) $\frac{1}{(x-1)(x+2)}$ (b) $\frac{x}{x^2-1}$	
	c)	If $y = cos(msin^{-1}(x))$ then show that $(1-x^2)y_{n+1} - x(2n+1)y_{n+1} + (m^2-n^2)y_n = 0$.	(4)
Q-7		Attempt all questions	(14)
	a)	State and prove machlaurin's series of e ^x also deduce the machlaurin's series of coshx.	(5)
	b)	Find Taylor's series of $x^5 + 4x^4 + 6x^3 - 4x + 1$ at $x = 2$.	(5)
	c)	Express $e^{\sin x}$ in powers of x upto x^4 .	(4)

Q-8 Attempt all questions (14)

- a) State and prove Lagrange's mean value theorem. (5)
- **b**) Apply Rolle's theorem for $f(x)=(x-1)\sin x$ in the interval [0, 1] (5)
- c) State Cauchy's mean value theorem also apply for f(x)=x and g(x)=x+1 in [1,2].